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Abstract-Sokkiication or melting of a slab-shaped body can occur under various conditions on both 
boundaries of the solid. Only the simplest situation has been subjected to a rigid analysis whereas the more 
general problem has been solved by approximate theories and by numerical simulation. However, most of 
the results are inconv~i~t for engin~~ng purposes, such as opt~~tion of phase-change ~uipment, and 
the theories predict rates of phase change which are too small in some cases and too large in others. 

The aim of this article is to provide a result which is of a simple analytic structure and which predicts too 
long (safe) freezing times for all parameter combinations of practical interest. Further, it is shown that this 

result can be employed to generate working equations of high accuracy. 

NOMENCLATURE 

= h&/k, Biot number; 
specific heat capacity; 
heat-transfer coefficient ; 
thermal conductivity; 

= n’/‘tc(lr,- T,)], 
phase-change parameter; 
time; 
temperature; 
co-ordinate in the direction of the 
moving interface. 

Greek letters 

m, thermal diffusivity; 

6, thickness of solidified layer ; 
a*, = S/S,,, dimensionless thickness 

of solidified layer; 

A, =&KC,, - Q/MT,- T,)., 
heat-ff ux parameter; 

A*, = ABi, modified heat-flux parameter; 

A, latent heat of fusion; 

P, density ; 

% = tff/6’, dimensionless time. 

Subscripts 

C, relating to cooling fluid; 

m, relating to melt; 

P, at phase-change conditions; 

; 
relating to cooling wall; 
at reference time to. 

Superscripts 

(lb “upper” limit of solidification time; 
(21% lower limit of solid~~tion time; 
(3)s weighted mean of solidification time. 

1. INTRODUCTION 

PROCESSES involving solid-liquid phase change are 
encountered in the chemical, food and metallurgical 
industry as well as in.fields such as surgery, crybiology 
and aeroscience. Applications include the formation of 
polar ice [l], the production of chemicals as prills [2] 
or Aakes [3], the freezing and destruction of tumorous 

brain tissue [4], the continuous casting of metals [SJ 
and many other operations. In all these cases the most 
important problem is to establish the position of the 
solid-liquid interface as a function of time, external 
conditions and physical as well as geometric properties 
of the system. With the solution at hand one can 
imm~iately specify main process parameters such as 
the height of a prilling tower, the rotational speed of a 
flaker, the temperature of a cryoprobe or length of a 
cooling mould for casting. If, in addition, the solution 
to the phase-change problem is of a simple analytic 
structure one can also devise optimum operating 
conditions for a given system or an optimum design for 
a given operation. This is of particular interest in some 
of the processes mentioned above. 

Difficulties in the mathematical treatment of the 
problem arise primarily from the boundary conditions 
at the moving interface and exact analytic solutions 
exist only for some limiting cases. If the tem~rature of 
the cooling wall is constant and the liquid is at fusion 
temperature one obtains the Stef~-Neumann sol- 
ution [6]; if the change in internal energy of the solid 
layer is negligibly small one obtains the quasi- 
stationary solution [7-91. The more general case of 
finite heat transfer at the boundaries of the solid as well 
as sizeable change in its internal energy during the 
process has been treated in two different ways: 

Analyses are based on the assumption of a second- 
or higher-order polynomial for the temperature distri- 
bution in the solid; approximate solutions are then 
obtained by applying variational methods [IO], in- 
tegral techniques [ 11,12] or by satisfying the govern- 
ing equation at the moving interface only I[l3-IS]. 
However, it is a shortcoming of all these methods that 
the absolute error of the result is not known, does not 
necessarily decrease with higher order of the poly- 
nomial (see the discussion in [16]) and may vary in 
sign [14,17]. Still, over a significant range of para- 
meter values good accuracy can be achieved if one is 
prepared to work with rather complicated and lengthy 
expressions, some of which can only be evaluated on 
the computer. 
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The second class of solutions has been developed by 
numerical simulation [17-211 and is presented in 
diagrams. The results are usually very accurate and are 
therefore useful for testing the validity of approximate 
methods. However, numerical results are not suitable 
for the purposes mentioned above. They lack the 
required analytic structure and in some places the 
diagrams can only be read to 10% accuracy. 

freezing time, a statement which may require some 
justification. 

In summary, we therefore believe that there is a 
place for a simple analysis which provides safe results, 
is sufficiently accurate over an important range of 
parameters values and can be used to generate equally 
simple results of improved accuracy. As the approach 
developed below breaks down for cylindrical and 
spherical systems we shall only consider the slab 
geometry; this aforegoing should also provide a simple 
and clear notation. A modified analysis for other 
geometries will be presented at a later stage [22]. 

Initially the solidification front must stay behind 
that of the true process because latent heat cannot be 
removed at the same rate. On the other hand, the final 
position of the phase front is the same in both the 
fictitious and the true processes so that at some stage 
the former must proceed faster than the latter. The 
critical question is whether, at any point in time, the 
calculated phase front can actually overtake the true 
one in which case our analysis might predict too short 
a freezing time. The conclusion here is that this is not 
possible although a formal mathematical proof cannot 
be presented for the general problem. However, the 
following development will show that the above 
conjecture holds for the classical Stefan problem and is 
likely to also hold for the other types of boundary 
conditions. 

With the symbols defined in the nomenclature and 
illustrated in Fig. 1 the general problem is formulated 
as follows: 

2. CONCEPT AND ANALYSIS 

In the following we shall deal exclusively with the 
freezing of a liquid in front of a plane wall. At the end it 
will be outlined under which conditions the results also 
apply to the corresponding melting problem. Constant 
physical properties are assumed throughout and the 
solidification process may occur between the two 
constant temperatures of melt and cooling fluid. 

According to Fig. 1 there is a linear temperature 
distribution in the solidified layer at any time. From and 

FIG. 1. Assumed temperature distribution during 
solidification. 

the one-dimensional Laplace equation or from an 
energy balance one obtains immediately the quasi- With Leibniz’s rule 

stationary solution. However, it is seen that the 
calculated freezing time for a given layer thickness is 
always too small because the removal of internal 
energy from the solid has been neglected. Hence this 
solution provides a “lower bound” for the freezing 
time. 

and the boundary conditions (2) and (3) it follows that 

Alternatively one can calculate the freezing time 
under the condition that after each time increment 
internal energy is removed until the temperature - hn(T, - T,)/(w). (7) 

profile has again relaxed to the steady-state (linear) 
one. This should result in an “upper bound” for the Integrating over the time t (when the solidified layer 

aT 2T 
-_=a-, 

at ax2 

kr 
ax X=0 

= h:(T,- T,) (2) 

/$I 
ax x=d 

= pl’ p + h,(T, - T,). (3) 

Here we have neglected the change in internal energy 
of the cooling wall and combined the film resistance 
l/h, and wall resistance &,/k, in the overall coefficient 

(4) 

Further, any desuperheating of the melt is, with good 
approximation [23], incorporated in the latent heat 
such that 

A’= A+c,(T,-T,). (5) 

Integrating equation (1) over 6 yields 
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FIG. 

f TC 

2. Illustration of the s~pl~ying ~s~ptions. 

thickness is just 6) leads to 

h,i 
- pc ml - T,). (8) 

At this stage the following approximations (illustrated 
in Fig. 2) may be made: 

(4 

04 

f 

8 
Tdx> 

T,+r, 
------a, 

0 2 

Thereby 

(11) 

For convenience the following dimensionless quan- 
tities are introduced: 

r = t$h2; 6* = &a,; Bi = ~~~~~k; i 

1’ MT,- T,) WI 
Ph = -; A= 

c(Tp- T,) hi(T,- T,j’ 

The reference length 6,, is, of course, arbitrary and 
one can choose other ones such as k& [21] or the 
ma~um layer thickness L at infinite time [17]. 
However, this means changing the notation of the 
variables r and 6* when either the wall temperature is 
constant (hi -+ 03) or the convective flux from the melt 
is zero (L + co). In the present notation the time r. is 
that to solidify a layer ofspecified thickness So (6* = 1). 
For constant wall temperature the Biot parameter is 
Bi = co and one can simply define a par~eter A* 
= ABi which stays finite. The limiting thickness at 
infinite time r. is given by 

Bj=$- 1; (13) 

at this value of 66 the energy transferred from the melt 
to the solid can just be removed by thecooling fluid 
and no capacity is available for removing latent heat. 

With the variables and parameters so defined the 
relation (11) becomes 

Ph A* 

zT+ 
s* 

2(1 t-BiG*) 

I 
r 1 

2 ------r--A-f. 
o lfBiG* 

(14) 

It is important to notice that the inequality (14) still 
holds for the true process; it is only now that we 
introduce a further approximation by defining a 
process 6*“)(r) which is governed by the equality 

Ph &4’1’ 

Bi+ 2(1 +Bid*“) 
~*(l, 

s r 1 
-_ dz-AT. 

() 1 +Bid*“) 
(15) 

Apparently this equation exactly expresses the physi- 
cal concept proposed above. The transition from 
equation (14) to (15) is clearly achieved with a b*(‘)(t) 
that is “on average” not larger than the true 6*(r); also, 
it was shown before that at least in the early stage of the 
process a*(l)(r) is smaller than 6*(r). However, in 
principle one cannot exclude the possibility that 
temporarily b*(i)(r) becomes larger than 6*(r) al- 
though such a deviation, if possible at all, would 
remain small because of the integral relationship. 

Justification for our conjecture is obtained primarily 
from the comparison with numerically exact results 
and with the analytic result for the classical Stefan 
problem. In the latter case 

6, = C~(p~)~(~~*) 

whereas equation (14) yields 

(16) 

Sb”’ = C,(Ph)&t,). (17) 

Since C,(Ph) is always smaller than or equal to Cr (Ph) 
it follows that equation (15), adequately simplified, 
must provide an upper bound for the time of 
solidification. In all other cases an analytic re- 
lationship equivalent to equation (16) is not known; 
therefore a formal proof cannot be formulated on the 
same basis. Various other attempts to prove or 
disprove the bounding character of equation (15) have 
not been successful until now. Still, the comparison of 
results suggests that the concept also holds for the more 
general boundary conditions so that the solution of 
equation (15) may, with some care, be termed an upper 
bound. 

After differentiation and rearrangement equation 
(15) can be integrated directly and after some lengthy 
but elementary calculus the solution is 
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The maximum time (rb’)Bi’) to solidify a layer of 
thickness 6, thus depends on the parameters Ph, Bi 
and A. The lower bound for the time is found by 
considering very large values of Ph; it is 

This is the well-known result from the quasi-stationary 
theory [9,15]. Further, it is verified that by inserting 
equation (13) into equations (18) or (19) the time 
becomes infinity. 

3. COMPARISON OF RESULTS 

Most of the results presented in the literature are not 
valid over the entire range of the three parameters Ph, 
Bi and A. Numerically exact data have been obtained 
for A = 0 [21] and for constant wall temperature [17] 
whereas only one approximate analytic solution [15] 
is available for comparison with the general result, 
equations (18) and (19). - Bi 

3.1. Finite heat transfer on both sides of the solidified 
layer 

The maximum possible error involved in using 
equation (19) can be estimated immediately by com- 
paring the two results (18) and (19) 

(20) 

As the second term in the bracket is always smaller 
than or equal to zero it follows that 

td”/ta d 1 + 1/2Ph. (21) 

Equation (21) reflects the well-known fact that at large 
values of the phase-change parameter Ph the quasi- 
stationary theory will yield satisfactory results; Ph > 5 
is a commonly accepted criterion [24]. However, 
equation (20) also shows that for certain combinations 
of Bi and A equation (19) may be equally satisfactory at 
smaller values of Ph. For instance, the same maximum 
possible error of 7.4% is found for both the following 
situations : 

(a) A = 0.1, Bi = 2.0, Ph = 5.0; 

(b) A = 0.4. Bi = 0.5, Ph = 2.5. 

Although such a trend is expected from purely 
physical reasoning it is now possible to actually 
quantify the range of the parameters where the quasi- 
stationary theory yields results of a specified minimum 
accuracy. 

On the other hand it is clear that the true tune of 
solidification will always lie in between those given by 
equations (18) and (19). It is therefore useful to have an 
estimate of the actual error involved in using either of 
the two results. The comparison with existing data and 
equations should also indicate the feasibility of a 

FIG. 3. Solidification time with finite heat transfer on both 
sides of the solid layer. Comparison between Stephan’s 
analysis (+-), the upper (- - - - -) and lower (- -) bound and 

the weighted mean (0). 
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1 

FIG. 4. Solidification time as in Fig. 3 but with large heat 
input from the melt. 

weighted average of equations (18) and (19) for use in 
design and optimization studies. 

For three different combinations of Ph and A 
Stephan [15] presented results which are based on the 
assumption of a second-order polynominal for the 
temperature in the solid [13,14]. His symbols 1 - <*, t, 
Ph and q* are equivalent to Bi, 7,BiZ, Ph and A/Ph 
respectively in the present notation. The comparison 
of the results is shown in Figs. 3 and 4 and a few 
comments may be justified. 
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A large phase-change parameter together with a 
sizeable heat flux from the melt results in a rather slow 
solidification process with a comparatively small final 
layer thickness (roBi and Bi are proportional to the 
absolute time to and layer thickness 6, respectively, see 
equation (12)). This favours the use of equation (18) 
rather than equation (19) although deviations are 
expected to remain small. Assuming that the parabolic 
approximation is correct at the parameter values 
present in Fig. 3 we find that for Ph = 5.401 and A 
= 0.5401 the upper limit over-predicts by less than 
0.4% and the lower limit under-predicts by less than 

5%. 
As expected these figures change substantially when 

Ph becomes small. The solid Layer grows faster and to a 
much large thickness and the difference between upper 
and lower limit becomes increasingly large with longer 
times of solidification. Thus at Bi = 0.3 (Ph = 0.271, A 
= 0.0271) the corresponding figures are+8.9% and 
-24.5% and they rise to+28.5% and-45.2% at Bi 
= 2.0. The latter parameter configuration would al- 
ready be difficult or uneconomical to realize in practice 
but it is clear that in such extreme cases neither of the 
two limiting solutions is very satisfacto~. Still, the 
simplicity and safety connected with equation (18) is 
attractive for engineering calculations. it is further 
concluded that smaller deviations will occur at values 
of Ph > 0.271. 

Another extreme case is considered in Fig. 4 where 
the heat flux from the melt is large. It is seen that for a 
short as well as very long time Stephan’s results exceed 
those from equation (18) by approximately 15 and 45% 
respectively. This is an unexpectedly large discrepancy 
and, until numerically exact results are available, no 
decision can be made as to which of the two concepts 
breaks down under such extreme conditions. 

At inte~ediate values of the SoIidi~cation time the 
comparison leads to much the same conclusions as 
with smaller heat flux from the melt. 

3.2. Constant wall temperature (A f 0, h,” I* CO) 
In this case we have to redefine the parameter A 

because Bi + co and A -+ 0. With the modified heat- 
flux parameter 

A* = ABi 

the upper and lower limit, for hf -+ co, become 

$)A*’ = -(Ph+&(A*+In (l--A*)) (22) 

and 

$)A*’ = - Ph(A* + In {l -A*)). 

Here the maximum possible error is given by 

(231 

and is seen to depend only on the phase-change 
parameter. In comparison with the previous case of 
“soft” cooling on the wall the solid layer will now grow 
faster which gives rise to a larger difference between 
the limits of solidification time. 

FIG. 5. Solidification time with constant wall temperature 
but convection from the melt. Comparison between numeri- 
cal results (- [ 171) the upper (- - - - - -) and lower (- . -) 

bound and the weighted mean (0). 

Beaubouef and Chapman [ 171 solved this problem 
numerically for three different values of the phase- 
change parameter, namely Ph = 0.2, 2.0 and 20.0. in 
Fig, 5 we have not included Ph = 20.0 because from 
equation (21a) it is realized that the maximum possible 
error is only 2.5%. At Ph = 2.0 the exact solution 
approaches the upper limit for short times (small layer 
thickness) and for very long times (slow solidification 
process); in between equation (22) over-predicts the true 
time by up to 10% whereas here the lower limit under- 
predicts by only 8%. Naturally, at Ph = 0.2 the predio 
tion errors become larger but one observes the same 
trends as in Figs. 3 and 4: For short or very long 
so~di~cation processes equation (22) yields good agree- 
ment with the exact results, in between it predicts up 
to 40% larger solidification times although it still rep 
resents a much better approximation than equation 
(23), the qu~i-stationary result. 

A further comparison is possible with the approx- 
imate analysis of Lapadula and Mueller [25] which is 
based on the variational approach [lo] and a para- 
bolic temperature profile in the solid layer. Their 
result, in the present notation, is 

T,A*~ =f(Ph)[A* +ln(l -A*)] (24) 

with 

Equation (24) provides a generally better agreement 
with the numerical results of Beaubouef and Chapman 
(see the comparison in [17]) than does equation (22) 
but has the disadvantage of under-predicting the 
solidification time at small &values and for short as 
well as very iong processes. 

On the other hand equation (25) can be compared 
directly with the corresponding expressions in equa- 
tions (22) and (23). Figure 6 illustrates that with very 
good accuracy equation (25) can be replaced by 

-f(Ph) = Ph ++ for Ph > 0.5 (24) 

HMT WI. 20, No. s-c 
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This result already indicates that a weighted mean of 
upper and lower limit might lead to rather accurate 
results (see Section 4). 

3.3 No heatjhx from the melt 

Again, the limiting solutions are easily drived from 
equations (18) and (19). With A --t 0 they become 

and 

zh”’ = Ph(l/BiS*). (28) 

The maximum possible error depends on both the 
phase-change parameter and the Biot number and 
varies between 

tb”/tg’ = 1 + 
1 

ZPh(I/L?i+f) 
for Bi-+O (29a) 

and 

#‘;tb”’ = 
1 

l+% for Bi-+cg. WW 

Since without heat input from the melt the 
solidification process is again faster than that of 
Section 3.1 the discrepancies between upper and lower 
bound are expected to be of the same order of 
magnitude as in Section 3.2, The comparison with 
numerical results [21] is seen in Fig. 7 and de- 

50/-- 1 
/ 

40. 

.c 3.0 - 
a 

IO 2.0 3.0 4.0 
-Ph 

FIG. 6. Comparison between variational analysis (- 
[251), upper (-----) and lower (-.-) bound and weighted 

mean (0). 

monstrates clearly that neither equation (27) nor {28) 
supply useful approximations when I% < 1. Pre- 
diction errors become increasingly larger with higher 
Biot numbers and in the limit of constant wall 
temperature (Bi --+ co) quite meaningless results are 
obtained. This last case apparently represents the 
fastest solidification process and is given by the 
Stef~-Nepal solution as shown graphically in 
Fig. 8. The upper and lower limiting solutions reduce 
to 

r’b’ = P/l/2+$ (30) 

and 

rb” = Phi2 (31) 

and it is seen that at Ph = 0.25 prediction errors of + 50 
and - SOY0 occur. 

1 
0 0.5 IO -----r? 20 

- IlBi 

FIG. 7. Solidification time without heat flux from the melt. 
Comparison between numerical results (- [21& upper 

(-----) and lower (-.-} bound and weighted mean (0). 

I-- 
0 - I ; ---i--d 

- I/Ph 

FIG. 8. Comparison between the Stefan-Neumann solution 
(+-), upper f- - - - -) and lo~o;~;+ bound and the weighted 

The comparison with nearly all the results published 
in the literature indicates that equation (18) and all its 
simplified versions provide a safe limit for the 
soli~~cation time and over-predicts by 10% at most as 
long as the phase-change parameter is I% 2 I. How- 
ever, for small Ph-values unacceptable errors occur 
and equation (18) on its own becomes of little use in 
engineering practice. 

4. WORKING EQUATIONS 

It is noticed that most of the exact results lie in the 
upper half of the envelope formed by the two limiting 
solutions, particu~rly when the phase-change para- 
meter is small. This suggests that a linear combination 
of equations (18) and (19) might yield a simple working 
equation of sufficient accuracy over the entire range of 
practically important Ph-values. However, as with any 
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averaging procedure, it will be necessary to compromise 
between accuracy and simplicity of the result; we may 
also lose the advantage of predicting always safe re- 
sults. The comparison of results as well as physical 
reasoning show that, with the same weighting factor 
applied throughout, prediction errors will occur in both 
directions and may, in places, be larger than with 
equation (18) alone. Still, just one simple formula to 
deal with all the discussed solidification processes has 
obvious advantages (see the Introduction) as long as a 
satisfactory accuracy is attained. 

In Figs. 3-8 some arbitrary points are included 
which have been calculated according to the following 
averaging procedure: 

rb”’ = J&t) + ;tsb2), (32) 

For the general problem equation (32) yields 

-$n 
Bi 

1 + 
l-A(l+Bi) 

(33) 

and, excluding the sections of Fig. 4 which have been 
discussed before, we find excellent agreement with 
Stephan’s results; a maximum error of approximately 
- 2.5% occurs at the very small Biot numbers. 

With the same weighting factors one obtains for the 
solidification time at constant wall temperature 

@A*’ = -(P~+~)~A*+ln(l-A*)] (34) 

which is identical to equation (26) and in good 
agreement with the analytical result of Lapadula and 
Mueller. The comparison of equation (34) with 
numerical results (see Fig. 5) indicates errors of up to 
5% as long as the solid layer does not grow to more 
than 85% of its final thickness at infinite time. 

Without heat flux from the melt and equation (32) 
we get 

@==Ph ;+; +; ( > 
- iln(l+Bi} (35) 

and 

$’ = Ph/2 i-i (for Bi + co). (36) 

Again, the results are shown only at a few points (Figs. 
7 and 8). It is seen that in both these cases of relatively 
fast growth of the solid layer an equal weighting of the 
limiting solution would result in an improved ac- 
curacy. In fact, the Stefan-Neumann solution is very 
accurately represented by 

t,, = Ph/2 +$ ( G - 3.5%). 

But for the sake of generality we prefer to leave the 
weighting factors as specified by equation (32). This 
leads to maximum errors of approximately + 9% (Fig. 
7) and -t 15% (Fig. 8) at Ph = 0.25; smaller errors arise 
with Ph > 0.25. 

5. coNcLusIoNs 
The lower limit for the solidification time of a slab- 

shaped body is given by the well established quasi- 
stationary solution. Based on an energy balance an 
analytic solution has been obtained which seems to 
constitute an upper limit for the solidification time. 

The solution is valid for the most commonly 
encountered boundary conditions, i.e. finite heat trans- 
fer from the melt to the solid layer and finite heat 
transfer or constant wall tem~rature on the cooling 
wall. In comparison with literature results the pre- 
diction error is less than 10% for Ph 2 1. Smaller 
values of the phase-change parameter lead to a large 
overestimation but in such cases a weighted average of 
both limiting solutions proves to be useful. With a i 
and 3 weighting of the upper and lower limit re- 
spectively a particularly simple result is obtained 
which represents the published data with a relatively 
high accuracy. Over a wide range of parameter 
combinations the errors are less than 5% and only for 
extremely long or extremely fast solidi~cation pro- 
cesses will the prediction error rise to 10 or 15%. In 
view of other short-comings of the analysis, such as the 
neglected temperature dependency of the physical 
properties, the present results are believed to be 
sufficiently accurate. 

It is easily verified that the same general principle 
applies also to melting problems as long as the 
boundary conditions are equivalent to the ones dis- 
cussed here. Thus, a semi-in~nite solid at fusion 
temperature which is heated from a source of constant 
temperature and through a stagnant layer of liquefied 
material [26] can be treated by the equations of 
Section 3.3; on the other hand, the treatment of the 
classical ablation problem would require additional 
assumptions concerning the penetration thickness. 
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NOTE ADDED IN PROOF 

sample solutions, J. Heat Transfer 81, 106-112 (1959). Equation (18) is, in fact, an upper bound for the solidi- 
19. L. C. Tao, Generalized numerical solutions of freezing a fication time. The proof will appear shortly. 

SOLUTION SIMPLE ET VRAISEMBLABLEMENT DE SECURITE 
POUR LE PROBLEME DE STEFAN GENERALISE 

R&sum&La solidification ou la fusion d’un corps en forme de plaque peut se produire sous des 
conditions diverses g chaque frontittre du solide. Seule la situation la plus simple a tti: soumise a une 

analyse stricte tandis que le probleme plus g&n&al a irt& rtsolu B l’aide de theories approchkes et par 
simulation numkrique. Cependant, la plupart des resultats ne peuvent convenir aux buts industriels, 
tels que l’optimisation des dispositifs de changement de phase, les theories prkvoyant des taux de 

changement de phase qui sont trop faibles dans certains cas et trop forts dans d’autres. 

Le but du prbent article est de fournir un rkultat sous forme analytique simple qui conduise B une 
pr6vision des temps de congClation surrestimbs (skcuritb) pour toute combinaison des paramttres 
d’int&&t pratique. On montre ensuite que ce rbultat peut Etre utilist pour formuler des tquations trts 

prtcises pour I’exploitation. 

EINE EINFACHE UND AUF DER SICHEREN SEITE LIEGENDE LOSUNG 
DES VERALLGEMEINERTEN STEFAN-PROBLEMS 

Zusemmenfassung-Das Erstarren oder Schmelzen eines plattenfermigen KGrpers kann unter verschie- 
denen Bedingungen auf beiden Seiten des FestkBrpers erfolgen. Lediglich der einfachste Fall konnte 
bislang streng analytisch gel&t werden, wiihrend das verallgemeinerte Problem ntiherungsweise bzw. 
numerisch gel&t wurde. Jedoch sind die meisten Ergebnisse ungeeignet fiir Ingenieurszwecke, z.B. fiir 
die Optimierung von Anlagen, in denen ein Phasenwechsel erfolgt. Die Theorien ergeben Phasenwechsel- 
geschwindigkeiten, die in einigen Fillen zu klein, in einigen zu groD sind. Das Ziel dieser Arbeit ist es, 
ein Ergebnis zu bieten, das eine einfache analytische Struktur aufweist, und da-s fiir alle in der Praxis 
auftretenden Parameter zu grol3e (sichere) Gefrierzeiten liefert. Desweiteren wird gezeigt, dat3 dieses 

Ergebnis dazu verwendet werden kann, Berechnungsgleichungen hoher Genauigkeit aufzustellen. 

nPOCTOE M AOCTATQqHO HAAEXHOE PEIIIEHME 
0606lllEHHOM 3AflAYM CTE@AHA 

AHHOTBUHR - 3aTsepneaaHne HIM nnaaneHMe Tena, HMeiotuero 1$0p~y nnacTwb1, MoxeT nposc- 

XonkiTbnprc pawniwblxycnoeclfix Ha 06ekix rpaH~uaxTBepnoroTena.CTporei2aHanu3npoBonsncs 

TonbKo flnx npocTetimer0 cnyran, a To spear KaK 6onee o6uan 3anaqa pemanacb c noMoU1bw npe- 

6nW~eHHblX MeTOLlOB N IlyleM ‘IllCJleHHOrO MoneJlkipOBaHnfl. OnHaKO. 60JlblUHHCTBO 113 nOJy’leHHblX 

pe3yflbTaTOB He nOL,XOflllT DJIR BHWteHepHblX Ueneti, KaK HaflpHMep, OnTMMH3aUHM napaMeTpOB 

060pynOBaHHR npw @a30ablx npespamew4nx B HeM. a TeopeTwecKufi pacqeT naeT cKopoc~14 $a30- 

BblX H3MeHeHlrk. KOTOpble HJIH CnlllLlKOM Manbl B OLtHHX C,Iy’IaaX. MnH CJIWLUKOM BWHKM B L,pyrHX. 

UeJlb RaHHOti pa6OTbl COCTOHT R IlOJly’ieHMM npOCTOii aHaJlflTH’ieCKOfi 3aBNCHMOCTH, KOTOpaa 

n03BonkiT paccwTaTb epew nnn nocTaTowor0 anwenbnoro npouecca 3aMopawiBawin np~ Bcex 

KOM6HHaUWIX napaMeTpoe. npenc-rasnnwutix npaKTwecKMR HHTepec. lloKa3aH0, qT0 3~0~ pesynb- 

TaT MOXGZT 6blTb HCnOJlb30BaH LlJlR nO.~y’leHcln pa6oqHx ,‘paBHeHMii 6onbtuoR TO’IHOCTM. 


