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Abstract—Solidification or melting of a slab-shaped body can occur under various conditions on both
boundaries of the solid. Only the simplest situation has been subjected to a rigid analysis whereas the more
general problem has been solved by approximate theories and by numerical simulation. However, most of
the results are inconvenient for engineering purposes, such as optimization of phase-change equipment, and
the theories predict rates of phase change which are too small in some cases and too large in others.

The aim of this article is to provide a result which is of a simple analytic structure and which predicts too
long (safe) freezing times for all parameter combinations of practical interest. Further, it is shown that this

result can be employed to generate working equations of high accuracy.

NOMENCLATURE
Bi, = h.do/k, Biot number;
¢, specific heat capacity;
h, heat-transfer coefficient;
k, thermal conductivity;

Ph, = X/[e(T,~T)],
phase-change parameter;

t, time;

T, temperature;

X, co-ordinate in the direction of the
moving interface.

Greek letters
o, thermal diffusivity;
4, thickness of solidified layer;
0%, = §/8,, dimensionless thickness
of solidified layer;
A, =h,(T,— Tp)/’h;(n ~T),

heat-flux parameter;

A*, = ABi, modified heat-flux parameter;

A, latent heat of fusion;

P density;

7, =taf8%, dimensionless time.
Subscripts

< relating to cooling fluid;

m, relating to melt;

D, at phase-change conditions;

w, relating to cooling wall;

0, at reference time ¢,
Superscripts

(1), “upper” limit of solidification time;
(2),  lower limit of solidification time;
(3), weighted mean of solidification time.

1. INTRODUCTION

PROCESSES involving solid-liquid phase change are
encountered in the chemical, food and metallurgical
industry as well as in fields such as surgery, crybiology
and aeroscience. Applications include the formation of
polar ice [1], the production of chemicals as prills [2]
or flakes [3], the freezing and destruction of tumorous
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brain tissue [4], the continuous casting of metals [5]
and many other operations. In all these cases the most
important problem is to establish the position of the
solid-liquid interface as a function of time, external
conditions and physical as well as geometric properties
of the system. With the solution at hand one can
immediately specify main process parameters such as
the height of a prilling tower, the rotational speed of a
flaker, the temperature of a cryoprobe or length of a
cooling mould for casting. If, in addition, the solution
to the phase-change problem is of a simple analytic
structure one can also devise optimum operating
conditions for a given system or an optimum design for
a given operation. This is of particular interest in some
of the processes mentioned above.

Difficulties in the mathematical treatment of the
problem arise primarily from the boundary conditions
at the moving interface and exact analytic solutions
exist only for some limiting cases. If the temperature of
the cooling wall is constant and the liquid is af fusion
temperature one obtains the Stefan—Neumann sol-
ution [6]; if the change in internal energy of the solid
layer is negligibly small one obtains the quasi-
stationary solution [7-9]. The more general case of
finite heat transfer at the boundaries of the solid as well
as sizeable change in its internal energy during the
process has been treated in two different ways:

Analyses are based on the assumption of a second-
or higher-order polynomial for the temperature distri-
bution in the solid; approximate solutions are then
obtained by applying variational methods [10}, in-
tegral techniques [ 11, 12] or by satisfying the govern-
ing equation at the moving interface only [13-15].
However, it is a shortcoming of all these methods that
the absolute error of the result is not known, does not
necessarily decrease with higher order of the poly-
nomial (see the discussion in [16]) and may vary in
sign [14,17)]. Still, over a significant range of para-
meter values good accuracy can be achieved if one is
prepared to work with rather complicated and lengthy
expressions, some of which can only be evaluated on
the computer.
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The second class of solutions has been developed by
numerical simulation [17-21] and is presented in
diagrams. The results are usually very accurate and are
therefore useful for testing the validity of approximate
methods. However, numerical results are not suitable
for the purposes mentioned above. They lack the
required analytic structure and in some places the
diagrams can only be read to 10% accuracy.

In summary, we therefore believe that there is a
place for a simple analysis which provides safe results,
is sufficiently accurate over an important range of
parameters values and can be used to generate equally
simple results of improved accuracy. As the approach
developed below breaks down for cylindrical and
spherical systems we shall only consider the slab
geometry; this aforegoing should also provide a simple
and clear notation. A modified analysis for other
geometries will be presented at a later stage [22].

2. CONCEPT AND ANALYSIS

In the following we shall deal exclusively with the
freezing of a liquid in front of a plane wall. At the end it
will be outlined under which conditions the results also
apply to the corresponding melting problem. Constant
physical properties are assumed throughout and the
solidification process may occur between the two
constant temperatures of melt and cooling fluid.

According to Fig. 1 there is a linear temperature
distribution in the solidified layer at any time. From
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F1G. I. Assumed temperature distribution during
solidification.

the one-dimensional Laplace equation or from an
energy balance one obtains immediately the quasi-
stationary solution. However, it is seen that the
calculated freezing time for a given layer thickness is
always too small because the removal of internal
energy from the solid has been neglected. Hence this
solution provides a “lower bound” for the freezing
time.

Alternatively one can calculate the freezing time
under the condition that after each time increment
internal energy is removed until the temperature
profile has again relaxed to the steady-state (linear)
one. This should result in an “upper bound” for the
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freezing time, a statement which may require some
Jjustification.

Initially the solidification fromt must stay behind
that of the true process because latent heat cannot be
removed at the same rate. On the other hand, the final
position of the phase front is the same in both the
fictitious and the true processes so that at some stage
the former must proceed faster than the latter. The
critical question is whether, at any point in time, the
calculated phase front can actually overtake the true
one in which case our analysis might predict too short
a freezing time. The conclusion here is that this is not
possible although a formal mathematical proof cannot
be presented for the general problem. However, the
following development will show that the above
conjecture holds for the classical Stefan problem and is
likely to also hold for the other types of boundary
conditions.

With the symbols defined in the nomenclature and
illustrated in Fig. 1 the general problem is formulated
as follows:

6T_ T i
a okt )
oT
k-— =h(T,—T) 2)
ax x=0
and
oT dé
k—| =pi'—+h,(T,—T,). 3
ox ., pE ( ) (3)

Here we have neglected the change in internal energy
of the cooling wall and combined the film resistance
1/h, and wall resistance d,,/k,, in the overall coefficient

K 1+‘kal ey
“(hc k.

Further, any desuperheating of the melt is, with good
approximation [23], incorporated in the latent heat
such that

A= ’1+Cm(Tm—"Tp) (5)
Integrating equation (1) over 9 yields
*oT oT oT
—dx =a| — - . (6)
o Ot Ox x=0
With Leibniz’s rule
d{e $oT dé
— Tdxy = | —dx+T()—
dt {Jo o Ot dt

and the boundary conditions (2) and (3) it follows that

a T, dé“'d 6Td h(T,—T,
:+ p Et._dt 0 X+ c( w c)/(pc)

x=4

—hu(T, = T,)/(pc). (7

Integrating over the time f (when the solidified layer
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Fic. 2. Tlustration of the simplifying assumptions.

thickness is just ) leads to

j.l ] hl ;
<—+ :q,)a=f T dx +—‘j (T, — Tdt
4 0 PC o
At
-—A(T,~-T) &
pc
At this stage the following approximations (illustrated
in Fig. 2) may be made:

s T+T,
(@) dex; pt s, ©)
. 2
(b) b1y > (T 10
pe w ¢ /5 pT 4wk ( )
Thereby

{ SR }
oAT,=T) " 2 +KH3))

> L dt h"'?(T T,) (11)
Z pe)o1+R.8/k pc " F

For convenience the following dimensionless quan-
tities are introduced:

T=10/6% 6% =5/5,; Bi=hd/k;
bL -
Phe—t . pAtnuT)
dT,-T) h(T,—T)

The reference length §, is, of course, arbitrary and
one can choose other ones such as k/h, [21] or the
maximum layer thickness L at infinite time [17].
However, this means changing the notation of the
variables 7 and §* when either the wall temperature is
constant (h, — o0) or the convective flux from the melt
is zero (L — o). In the present notation the time 1, is
that to solidify a layer of specified thickness 3, (* = 1).
For constant wall temperature the Biot parameter is
Bi = o0 and one can simply define a parameter A*
= ABi which stays finite. The limiting thickness at
infinite time t, is given by

1

Bi=——-1;
A

(12

(13)
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at this value of §, the energy transferred from the melt
to the solid can just be removed by the cooling fluid
and no capacity is available for removing latent heat.

With the variables and parameters so defined the
relation (11) becomes

Ph o*
b 5*
Bi = 2(1+Bid*)

dt— A%

2 J ! (14)
o 1+ Bié*

It is important to notice that the inequality (14) still

holds for the true process; it is only now that we

introduce a further approximation by defining a

process §*)(7) which is governed by the equality

Ph 5*(1)
— 4+
5

(1)
2(1 +Bi5*‘“} o

dr~Az 15)

- Jo 1+ Big*»
Apparently this equation exactly expresses the physi-
cal concept proposed above. The transition from
equation (14) to (15) is clearly achieved with a 6*(*)(1)
that is “on average” not larger than the true §*(z); also,
it was shown before that at least in the early stage of the
process §*1)(7) is smaller than &*(r). However, in
principle one cannot exclude the possibility that
temporarily 5**X(z} becomes larger than §*(¢) al-
though such a deviation, if possible at all, would
remain small because of the integral relationship.
Justification for our conjecture is obtained primarily
from the comparison with numerically exact results
and with the analytic result for the classical Stefan
problem. In the latter case

8o = C1(Ph) /(ato) (16)
whereas equation (14) yields
o) = Ca(Ph) ./ (ato). 17)

Since C,(Ph)is always smaller than or equal to C,(Ph)
it follows that equation (15), adequately simplified,
must provide an upper bound for the time of
solidification. In all other cases an analytic re-
lationship equivalent to equation (16) is not known;
therefore a formal proof cannot be formulated on the
same basis. Various other attempts to prove or
disprove the bounding character of equation (15) have
not been successful until now. Still, the comparison of
results suggests that the concept also holds for the more
general boundary conditions so that the solution of
equation (15) may, with some care, be termed an upper
bound.

After differentiation and rearrangement equation
{15) can be integrated directly and after some lengthy
but elementary calculus the solution is

Bi 1 Bi
WBi? = (—Ph—3H — +-—Indl1 +
tBi? = (—Ph %_)(A t e n{ 1~1/A})

Bi
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The maximum time (t{’Bi?) to solidify a layer of
thickness 8, thus depends on the parameters Ph, Bi
and A. The lower bound for the time is found by
considering very large values of Ph; it is

1B Bi 1 Bi

- -= - — = —In{l +-—+—%.  (19)
Ph A A 1—1/A

This is the well-known result from the quasi-stationary

theory [9, 15]. Further, it is verified that by inserting

equation (13) into equations (18) or (19) the time

becomes infinity.

3. COMPARISON OF RESULTS

Most of the results presented in the literature are not
valid over the entire range of the three parameters Ph,
Bi and A. Numerically exact data have been obtained
for A = 0 [21] and for constant wall temperature [17]
whereas only one approximate analytic solution [15]
is available for comparison with the general result,
equations (18) and (19).

3.1. Finite heat transfer on both sides of the solidified
layer
The maximum possible error involved in using
equation (19) can be estimated immediately by com-
paring the two results (18) and (19)

1)/4(2) — +(1 2)
/P = 1/

Bi
In<1 + ——>—
1 1—A(1+ Bi)
=1+ —
2Ph Bi N 1 mdi s Bi
—+4+—1n
A A? 1-1/A
As the second term in the bracket is always smaller

than or equal to zero it follows that

(/18 < 1+1/2Ph.

20)

@n

Equation (21) reflects the well-known fact that at large
values of the phase-change parameter Ph the quasi-
stationary theory will yield satisfactory results; Ph > 5
is a commonly accepted criterion [24]. However,
equation (20) also shows that for certain combinations
of Bi and A equation (19) may be equally satisfactory at
smaller values of Ph. For instance, the same maximum
possible error of 7.4% is found for both the following
situations:

(@) A= 0.1,
(b) A=04, Bi=05

Bi =20, Ph=350;
Ph=235.

Although such a trend is expected from purely
physical reasoning it is now possible to actually
quantify the range of the parameters where the quasi-
stationary theory yields results of a specified minimum
accuracy.

On the other hand it is clear that the true time of
solidification will always lie in between those given by
equations (18) and (19). It is therefore useful to have an
estimate of the actual error involved in using either of
the two results. The comparison with existing data and
equations should also indicate the feasibility of a
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Fi1G. 3. Solidification time with finite heat transfer on both

sides of the solid layer. Comparison between Stephan’s

analysis (——), the upper (- - - - - ) and lower (- - -} bound and
the weighted mean (@).
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Fi1G. 4. Solidification time as in Fig. 3 but with large heat
input from the melt.

weighted average of equations (18) and (19) for use in
design and optimization studies.

For three different combinations of Ph and A
Stephan [ 15] presented results which are based on the
assumption of a second-order polynominal for the
temperature in the solid [ 13, 14]. His symbols 1 — &*, 7,
Ph and g* are equivalent to Bi, t1oBi*, Ph and A/Ph
respectively in the present notation. The comparison
of the results is shown in Figs. 3 and 4 and a few
comments may be justified.
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A large phase-change parameter together with a
sizeable heat flux from the melt results in a rather slow
solidification process with a comparatively small final
layer thickness (1oBi* and Bi are proportional to the
absolute time r,, and layer thickness 8, respectively, see
equation (12)). This favours the use of equation (18)
rather than equation {19) although deviations are
expected to remain small. Assuming that the parabaolic
approximation is correct at the parameter values
present in Fig, 3 we find that for Ph = 5401 and A
= 0.5401 the upper limit over-predicts by less than
0.4%, and the lower limit under-predicts by less than
5%.

As expected these figures change substantially when
Ph becomes small. The solid layer grows fasterand toa
much large thickness and the difference between upper
and lower limit becomes increasingly large with longer
times of solidification. Thus at Bi = 0.3 (Ph = 0.271,A
= 0.0271) the corresponding figures are+8.9% and
—24.5% and they rise to+28.5% and—45.2% at Bi
= 2.0. The latter parameter configuration would al-
ready be difficult or uneconomical to realize in practice
but it is clear that in such extreme cases neither of the
two limiting solutions is very satisfactory. Still, the
simplicity and safety connected with equation (18) is
attractive for engineering calculations. It is further
concluded that smaller deviations will occur at values
of Ph > 0.271.

Another extreme case is considered in Fig. 4 where
the heat flux from the melt is large. It is seen that fora
short as well as very long time Stephan’s results exceed
those from equation (18) by approximately 15 and 459
respectively. This is an unexpectedly large discrepancy
and, until numerically exact results are available, no
decision can be made as to which of the two concepts
breaks down under such extreme conditions.

At intermediate values of the solidification time the
comparison leads to much the same conclusions as
with smaller heat flux from the melt.

3.2. Constant wall temperature (A $ 0,h{ — o0)

In this case we have to redefine the parameter A
because Bi —» o« and A — 0. With the modified heat-
flux parameter

A* = ABi
the upper and lower limit, for A, — o, become
DA% = —(Ph+4) (A*+In {1-A%})  (22)
and
DA% = — Ph{A*+In{l1—A*}). 23)
Here the maximum possible error is given by
i ! (21a)

— =1 4
2 2Ph

and is seen to depend only on the phase-change
parameter. In comparison with the previous case of
“soft” cooling on the wall the solid layer will now grow
faster which gives rise to a larger difference between
the limits of solidification time.

HMT Vol. 20, No. §—C

1o}

5 /

2
100+

5

¥ 2
——, LY

F1G. 5. Solidification time with constant wall temperature

but convection from the melt. Comparison between numeri-

cal results (~——[17]) the upper (-----~ ) and lower (- -)
bound and the weighted mean {®).

Beaubouef and Chapman [17] solved this problem
numerically for three different values of the phase-
change parameter, namely Ph = 0.2, 2.0 and 20.0. In
Fig. 5 we have pot included Pk = 200 because from
equation (21a) it is realized that the maximum possible
error is only 2.5%. At Ph = 2.0 the exact solution
approaches the upper limit for short times (small layer
thickness} and for very long times (slow solidification
process}; in between equation (22) over-predicts the true
time by up to 10%; whereas here the lower limit under-
predicts by only 8%. Naturally, at Ph = 0.2 the predic-
tion errors become larger but one observes the same
trends as in Figs. 3 and 4: For short or very long
solidification processes equation (22) yields good agree-
ment with the exact results, in between it predicts up
to 40% larger solidification times although it still rep-
resents a much better approximation than equation
{23}, the quasi-stationary result.

A further comparison is possible with the approx-
imate analysis of Lapadula and Mueller [25] which is
based on the variational approach [10] and a para-
bolic temperature profile in the solid layer. Their
result, in the present notation, is

1,A%2 = f(Ph)[A* +1n(1~A%)] (24)
with
2/Ph+15Ph+10
~f(Ph) = TTSPhels 25)

Equation (24) provides a generally better agreement
with the numerical results of Beaubouef and Chapman
(see the comparison in [17]) than does equation (22)
but has the disadvantage of under-predicting the
solidification time at small Ph-values and for short as
well as very long processes.

On the other hand equation (25) can be compared
directly with the corresponding expressions in equa-
tions (22) and (23). Figure 6 illustrates that with very
good accuracy equation (25) can be replaced by

—~f(Phy=Ph+}4 for Ph>05 (26)
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This result already indicates that a weighted mean of
upper and fower limit might lead to rather accurate
results (see Section 4).

3.3 No heat flux from the melt
Again, the limiting solutions are easily drived from
equations (18) and (19). With A — 0 they become

1 1
™ = Ph{1/Bi+4)+% + k.{l — —In{l +Bi)1 27)
2Bi| Bi i
and
) = Ph(1/Bi+

N

) (28)

The maximum possible error denends on both the

varies between

D =1 + for Bi—+0Q (29a)

2Ph(1/Bi+%)
and

1
R = | 4+ —— for Bi-s 0. 29b)
Ly ity >Ph (

Since without heat input from the melt the
solidification process is again faster than that of
Section 3.1 the discrepancies between upper and lower
bound are expected to be of the same order of
magnitude as in Section 3.2. The comparison with
numerical results [21] is seen in Fig. 7 and de-
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Fi1G. 6. Comparison between variational analysis (——
[257), upper (-----) and lower (—-—) bound and weighted
mean (@),

monstrates clearly that neither equation (27) nor (28}
supply useful approximations when Ph < 1. Pre-
diction errors become increasingly larger with higher
Biot numbers and in the limit of constant wall
temperature (Bi - c0) quite meaningless results are
obtained. This last case apparently represents the
fastest solidification process and is given by the
Stefan-Neumann solution as shown graphically in
Fig. 8. The upper and lower limiting solutions reduce
to

W = Ph/2+1 (30)
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and

1

@ = Ph/2 (31
S Ph/2 (31

—

and it is seen that at Ph = 0.25 prediction errors of + 50
and — 50%; occur,

0 05 ) 5 70
— [/Bi
FiG. 7. Solidification time without heat flux from the melt.
Comparison between numerical results (—— [213), upper
(-----} and lower {——} bound and weighted mean (@®).

F1G. 8. Comparison between the Stefan-Neumann solution
{——), upper{(----- yand lower (- - -} bound and the weighted
mean {@).

The comparison with nearly all the results published
in the literature indicates that equation (18) and all its
simplified versions provide a safe limit for the
solidification time and over-predicts by 10% at most as
long as the phase-change parameter is Ph > 1. How-
ever, for small Ph-values unacceptable errors occur
and equation (18) on its own becomes of little use in
engineering practice.

4. WORKING EQUATIONS

It is noticed that most of the exact results lie in the
upper half of the envelope formed by the two limiting
solutions, particularly when the phase-change para-
meter is small. This suggests that a linear combination
of equations (18) and (19) might yield a simple working
equation of sufficient accuracy over the entire range of
practically important Ph-values. However, as with any
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averaging procedure, it will be necessary to compromise
between accuracy and simplicity of the result; we may
also lose the advantage of predicting always safe re-
sults. The comparison of results as well as physical
reasoning show that, with the same weighting factor
applied throughout, prediction errors will occur in both
directions and may, in places, be larger than with
equation (18) alone. Still, just one simple formula to
deal with all the discussed solidification processes has
obvious advantages (see the Introduction) as long as a
satisfactory accuracy is attained.

In Figs. 3-8 some arbitrary points are included
which have been calculated according to the following
averaging procedure:

o = el e, (32)

For the general problem equation (32) yields

Bi 1 Bi
@Bz = (~Ph—hH[ 2 + i1
o=t 3’(A A “{ +1—1//5})

ind1 + Bi (33)
3 1—A(1 +Bi)
and, excluding the sections of Fig. 4 which have been
discussed before, we find excellent agreement with
Stephan’s results; a maximum error of approximately
—2.5%, occurs at the very small Biot numbers.
With the same weighting factors one obtains for the
solidification time at constant wall temperature

WA = — (Ph+H[A*+In(1-4%]  (34)

which is identical to equation (26) and in good
agreement with the analytical result of Lapadula and
Mueller. The comparison of equation (34) with
numerical results (see Fig. 5) indicates errors of up to
5% as long as the solid layer does not grow to more
than 85% of its final thickness at infinite time.

Without heat flux from the melt and equation (32)
we get

o 1
D e PRl — + -]+
o (3;‘ 2) 6

1

1 .
+ ﬁ(l - Eln{HBt}) (35)

and

™ = Ph/2+%  (for Bi— o). (36)

Again, the results are shown only at a few points (Figs.
7 and 8). It is seen that in both these cases of relatively
fast growth of the solid layer an equal weighting of the
limiting solution would result in an improved ac-
curacy. In fact, the Stefan—Neumann solution is very
accurately represented by

7o = Ph/2+}% (€ ~3.5%).

But for the sake of generality we prefer to leave the
weighting factors as specified by equation (32). This
leads to maximum errors of approximately +9%; (Fig.
7y and + 159, (Fig. 8) at Ph = 0.25; smaller errors arise
with Ph > 0.25.
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5. CONCLUSIONS

The lower limit for the solidification time of a slab-
shaped body is given by the well established quasi-
stationary solution. Based on an energy balance an
analytic solution has been obtained which seems to
constitute an upper limit for the solidification time.

The solution is valid for the most commonly
encountered boundary conditions, i.e. finite heat trans-
fer from the melt to the solid layer and finite heat
transfer or constant wall temperature on the cooling
wall. In comparison with literature results the pre-
diction error is less than 10% for Ph > 1. Smaller
values of the phase-change parameter lead to a large
overestimation but in such cases a weighted average of
both limiting solutions proves to be useful. With a %
and { weighting of the upper and lower limit re-
spectively a particularly simple result is obtained
which represents the published data with a relatively
high accuracy. Over a wide range of parameter
combinations the errors are less than 5% and only for
extremely long or extremely fast solidification pro-
cesses will the prediction error rise to 10 or 15%. In
view of other short-comings of the analysis, such as the
neglected temperature dependency of the physical
properties, the present results are believed to be
sufficiently accurate.

It is easily verified that the same general principle
applies also to melting problems as long as the
boundary conditions are equivalent to the ones dis-
cussed here. Thus, a semi-infinite solid at fusion
temperature which is heated from a source of constant
temperature and through a stagnant layer of liquefied
material [26] can be treated by the equations of
Section 3.3; on the other hand, the treatment of the
classical ablation problem would require additional
assumptions concerning the penetration thickness.
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NOTE ADDED IN PROOF
Equation (18) is, in fact, an upper bound for the solidi-

fication time. The proof will appear shortly.

SOLUTION SIMPLE ET VRAISEMBLABLEMENT DE SECURITE
POUR LE PROBLEME DE STEFAN GENERALISE

Resume—La solidification ou la fusion d’un corps en forme de plaque peut se produire sous des
conditions diverses a chaque frontiére du solide. Seule la situation la plus simple a été soumise a une
analyse stricte tandis que le probléme plus général a été résolu a l'aide de théories approchées et par
simulation numérique. Cependant, la plupart des résultats ne peuvent convenir aux buts industriels,
tels que l'optimisation des dispositifs de changement de phase, les théories prévoyant des taux de
changement de phase qui sont trop faibles dans certains cas et trop forts dans d’autres.

Le but du présent article est de fournir un résultat sous forme analytique simple qui conduise a une
prévision des temps de congélation surrestimés (sécurité) pour toute combinaison des paramétres
d’intérét pratique. On montre ensuite que ce résultat peut étre utilisé pour formuler des équations trés

précises pour 'exploitation.

EINE EINFACHE UND AUF DER SICHEREN SEITE LIEGENDE LOSUNG
DES VERALLGEMEINERTEN STEFAN-PROBLEMS

Zusammenfassung — Das Erstarren oder Schmelzen eines plattenformigen Korpers kann unter verschie-
denen Bedingungen auf beiden Seiten des Festkorpers erfolgen. Lediglich der einfachste Fall konnte
bislang streng analytisch gelost werden, wahrend das verallgemeinerte Problem néherungsweise bzw.
numerisch geldst wurde. Jedoch sind die meisten Ergebnisse ungeeignet fiir Ingenieurszwecke, z.B. fiir
die Optimierung von Anlagen, in denen ein Phasenwechsel erfolgt. Die Theorien ergeben Phasenwechsel-
geschwindigkeiten, die in einigen Fillen zu klein, in einigen zu grof sind. Das Ziel dieser Arbeit ist es,
ein Ergebnis zu bieten, das eine einfache analytische Struktur aufweist, und das fiir alle in der Praxis
auftretenden Parameter zu groBe (sichere) Gefrierzeiten liefert. Desweiteren wird gezeigt, daB dieses
Ergebnis dazu verwendet werden kann, Berechnungsgleichungen hoher Genauigkeit aufzustellen.

MPOCTOE U AOCTATOYHO HAAEXHOE PEHIEHME
OBOBHIEHHOM 3AJAUYN CTEDPAHA

AHHoOTalHA — 3aTBep/eBaHHE WIIW IaB/EHHE Teaa, UMeKLWero GopMy FJIACTHHBI, MOXET NPOUC-
XOAMTh MIPH Pa3IMYHbIX YCI0BUAX HA 00eHX rpaHuuax Taepaoro Tena. CTporuii avanus npoBoauscs
TOJNLKO ANs NPOCTEHLLETO cliyyast, B TO BpeMa kak Oonee obllas 3aaa4a peianach ¢ noMoulbio npu-
6AMKEHHBIX METOOOB Y NYTEM YUCIEHHOTO MOenHpoBaHus. OOHaKko, GOMbIIMHCTBO W3 NONYUYEHHBIX
pe3ybTATOB HE MOAXOAMT OIS MHXEHEPHbIX Uefied, KaK HanpHMep, ONTUMHU3ALUMM NMapamMeTpoB
obopynosanus nNpu $Ga3oBbix NMPEBPALIEHUAX B HEM, a TEOPETHYECKHI pacueT JaeT CKOpPoCTH dazo-
BBIX M3MEHEHHIl, KOTODbIE WK CIULIKOM Mallbl B OOHUX CIyYasix, MJIH CIIMIIKOM BE/IMKH B APYTHX.
Hens naHHOit paBoTbl COCTOMT B MONYHEHMM NPOCTONH AHANIMTHYECKOH 3ABHCHMMOCTH, KOTOpas
MO3BOJUT PACCUMTATh BPEMSA /ISl AOCTATOYHOIO AJHMTENBHOIO NPOUECCa 3aMOPaXXKUBAHNSA TIPHU BCEX
KOMOHHAUMAX MapaMeTPOB, MPeaCTaB/IfIOLMX NTPAaKTHYeCKH uHTepec. TNMoka3aHo, 4TO 3TOT pely/ib-
TaT MOXET ObITb UCAO/IL30OBAH ANA NOJYUYEHUs pabo4YuX yYpaBHEHUH OONbLUIOH TOYHOCTH.



